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Abstract
Spin-polarized transport through a quantum dot strongly coupled to ferromagnetic electrodes
with noncollinear magnetic moments is analysed theoretically in terms of the nonequilibrium
Green function formalism based on the equation of motion method. Electrons in the dot are
assumed to be coupled to a phonon bath. The influence of electron–phonon coupling on
tunnelling current, linear and nonlinear conductance, and tunnel magnetoresistance is studied in
detail. Variation of the main Kondo peaks and phonon satellites with the angle between the
magnetic moments of the leads is analysed.

1. Introduction

Electronic transport through single molecules and quantum
dots (QDs) coupled to metallic leads is a subject of
current interest, particularly at low temperatures where
the Kondo physics emerges [1–10]. Qualitatively new
features of electronic transport appear when metallic leads
are ferromagnetic and charge transport is associated with
a spin current. It has been shown that the Kondo
anomaly in electron transport through a quantum dot attached
symmetrically to ferromagnetic leads is suppressed in the
parallel configuration [11–18], while in the antiparallel
configuration it has features similar to those for quantum dots
attached to nonmagnetic leads. This behaviour has also been
confirmed experimentally in transport measurements on large
molecules [19, 20] as well as on semiconductor QDs [21].
The partial or total suppression of the Kondo anomaly is a
consequence of an effective exchange field originating from
the spin-dependent coupling of the dot to ferromagnetic leads.
It is worth noting that suppression of the Kondo anomaly may
also occur in antiparallel configurations when coupling to the
leads is not symmetric.

Suppression of the Kondo anomaly in electronic transport
through quantum dots attached to ferromagnetic leads
was studied theoretically not only for collinear magnetic
configurations, but also for noncollinear ones [17, 18]. The
latter geometry is of particular interest as it gives detailed
information on the variation of the anomaly with the angle
between the magnetic moments of the leads. It has been shown
that the Kondo peak in differential conductance is suppressed
already at small deviations from the antiparallel configuration,
while for larger deviations the anomaly varies rather slowly
with the angle between the magnetic moments.

The above mentioned theoretical and experimental
investigations of the Kondo phenomenon did not take
into account possible coupling of the electronic states to
vibrational modes. However, recent experimental data
on electronic transport through molecules and QDs reveal
features which clearly indicate the role of vibrational degrees
of freedom [22–30]. Extensive theoretical efforts have
been undertaken to account for these observations [31–45].
However, theoretical considerations sometimes lead to
contradictory predictions, particularly on the position of
phonon satellites in differential conductance. It has also been

0953-8984/08/255219+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/25/255219
http://stacks.iop.org/JPhysCM/20/255219


J. Phys.: Condens. Matter 20 (2008) 255219 R Świrkowicz et al

reported that the nonresonant tunnelling of electrons in single
molecules is associated with excited/absorbed vibrational
modes of the molecule. When the electron–phonon coupling
is strong enough, the tunnelling electron can absorb or emit
a phonon, which has a significant influence on the transport
characteristics.

In a recent paper [44] the Kondo anomaly and tunnel
magnetoresistance (TMR) have been investigated in the limit
of infinite Coulomb correlations for the dot coupled to
ferromagnetic electrodes. It has been shown that new satellite
peaks induced by the electron–phonon coupling appear on both
sides of the main Kondo peak. Very recently, the same authors
extended their considerations to a finite Coulomb parameter
U [45]. In both cases the considerations were limited to
collinear magnetic configurations. In this paper we extend
the theoretical considerations of the phonon-assisted electronic
transport (in the Kondo regime) through quantum dots coupled
to nonmagnetic leads (or ferromagnetic ones with collinear
magnetizations) to the case of ferromagnetic electrodes with
arbitrary orientation of the leads’ magnetic moments. Since
the Kondo effect in quantum dots attached to ferromagnetic
leads with noncollinear alignment of the leads’ moments was
studied by us in [17] in the absence of electron–phonon
coupling, one may also say that the present work extends
the theoretical description of the Kondo effect in transport
through quantum dots attached to ferromagnetic leads with
noncollinear magnetizations to the case when the electrons are
additionally coupled to a phonon bath.

The paper is organized as follows. In section 2 we describe
the system under consideration. The theoretical method is
described in section 3, where the equation of motion method
is used to derive nonequilibrium Green functions for the
dot. Relevant numerical results for the spectral functions,
tunnelling current, conductance, and tunnel magnetoresistance
are presented and discussed in section 4. A summary and
general conclusions are presented in section 5.

2. Model

The system under consideration consists of a quantum dot
which is coupled to two ferromagnetic electrodes (also referred
to as leads in the following). Magnetic moments of the leads
are generally noncollinear and form an angle θ . Electrons in
the dot are coupled to a phonon bath, which includes modes
of a single frequency. The Hamiltonian of the system can be
written in the general form as H = HL+ HR+ Hph+ HD + HT,
where Hβ = ∑

ks εkβsc†
kβsckβs describes the left (β = L)

and right (β = R) electrodes in the non-interacting quasi-
particle approximation, with c†

kβs (ckβs) being the creation
(annihilation) operator for an electron in the lead β and with
the wavevector k, energy εkβs , and spin s (s = + for
majority electrons and s = − for minority ones). The term
Hph = ω0a†a describes the phonon bath, with a† (a) being the
creation (annihilation) operator of the local vibrational mode
of energy ω0. Hamiltonian HD describes a single-level dot and
is assumed in the form

HD =
∑

σ

Eσ d†
σ dσ + Ud†

↑d↑d†
↓d↓ +λ(a† +a)

∑

σ

d†
σ dσ , (1)

where d†
σ (dσ ) creates (annihilates) an electron with spin σ on

the dot (σ = ↑,↓ along the quantization axis appropriate for
the dot). The dot’s energy level Eσ may be spin dependent
in a general case. An effective exchange field Bex following
from interaction of the dot with ferromagnetic electrodes leads
to a certain renormalization and spin splitting of the dot
level. Orientation of this field also determines the relevant
quantization axis for the dot. In a general case, Coulomb
interaction between electrons is taken into account in the
Hubbard form, and is described by the parameter U . The
last term of the Hamiltonian (1) describes the electron–phonon
interaction (EPI), with λ being the relevant coupling parameter.

The term HT of the Hamiltonian H describes processes
of tunnelling between the leads and dot, and is assumed in the
form [17]

HT =
∑

kβ

∑

sσ

W sσ
kβ c†

kβsdσ + h.c., (2)

where W sσ
kβ are elements of the matrix Wkβ ,

Wkβ =
(

Tkβ+ cos(ϕβ/2) −Tkβ+ sin(ϕβ/2)

Tkβ− sin(ϕβ/2) Tkβ− cos(ϕβ/2)

)

(3)

with ϕβ denoting the angle between the local quantization axis
in the lead β and the quantization axis appropriate for the dot.
When ϕβ = 0, the matrix elements Tkβs describe electron
tunnelling from the dot to the spin majority (s = +) and
spin minority (s = −) electron bands in the lead β . For
a symmetrical and unbiased system one may assume ϕR =
−ϕL = θ/2, where θ is the angle between magnetic moments
of the two leads. In a general case, however, orientation of the
quantization axis has to be determined self-consistently.

The strength of coupling of the quantum dot and electrode
β is described by the parameter 	

β
s =2π

∑
k |Tkβs |2δ(E−εkβs).

This parameter can be assumed as independent of energy
within the electron band in the leads and zero otherwise. As
the spin polarization of electrons at the Fermi level in the lead
β is described by a factor pβ , the coupling constants 	

β
s can be

written in the form 	
β
s = 	β(1 + spβ) for s = ±1.

The electric current J flowing through the system is
calculated according to the formula [46, 47]

J = ie

2h̄

∫
dE

2π
Tr[(ΓL − ΓR)G<(E) + ( fL(E)ΓL

− fR(E)ΓR)(G>(E) − G<(E))], (4)

where fβ(E) denotes the Fermi–Dirac distribution function for
the lead β , while G<(E) and G>(E) are the Fourier transforms
of the lesser and greater Green functions, defined as G<

σσ ′(t) =
i〈d†

σ ′(0)dσ (t)〉 and G>
σσ ′(t) = −i〈dσ (t)d†

σ ′(0)〉, respectively.
Elements of the interaction matrix Γβ can be written as
follows: 	

β

↑↑ = 	
β
+ cos2(ϕβ/2) + 	

β
− sin2(ϕβ/2), 	

β

↓↓ =
	

β
+ sin2(ϕβ/2) + 	

β
− cos2(ϕβ/2), and 	

β

σ σ̄ = (1/2)(	
β
+ −

	
β
−) sin(ϕβ).

3. Theoretical formulation

To determine the lesser and greater Green functions in
the presence of EPI, the Hamiltonian H of the system is
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transformed as H̃ = eS H e−S = H̃el + H̃ph with the use of
the canonical transformation, S = (λ/ω0)

∑
σ d†

σ dσ (a† − a),
which allows one to eliminate the electron–phonon coupling
term from the dot Hamiltonian HD [48]. The new fermion
operators are then d̃σ = dσ X and d̃†

σ = d†
σ X†, where X =

exp[−(λ/ω0)(a† − a)]. In turn, the transformed Hamiltonian
H̃ can be written in the form H̃ = Hph + HL + HR + H̃D + H̃T,
where the dot Hamiltonian has now the Anderson-type form

H̃D =
∑

σ

ε̃σ d†
σ dσ + Ũd†

↑d↑d†
↓d↓, (5)

with the renormalized energy level, ε̃σ = Eσ − gω0, and
renormalized correlation parameter, Ũ = U − 2gω0, where
g = (λ/ω0)

2. The tunnel Hamiltonian also becomes changed
by the transformation, and the new tunnelling matrix elements
are renormalized as Tkβs ⇒ T̃kβs = Tkβs X .

The electron and phonon subsystems become decoupled
when the phonon operator X appearing in H̃T is replaced by
its expectation value in thermal equilibrium, X ⇒ 〈X〉 =
exp[−g(Nph + 1/2)], where Nph denotes the equilibrium
phonon population. The transformed Hamiltonian, H̃ , can
be subsequently used to determine the time evolution of the
system.

The relevant lesser Green function can be expressed in the
following form:

G<
σσ ′(t) = i

〈
d†

σ ′(0)dσ (t)
〉

H
= i

〈
d†

σ ′(0)X†(0)dσ (t)X (t)
〉

H̃
,

(6)
where the subscripts H and H̃ indicate the appropriate
Hamiltonian that governs the system evolution. Since
the electron and phonon subsystems are decoupled, the
corresponding average values can be calculated independently.
Accordingly, the Green function G<

σσ ′(t) can be expressed
as [39]

G<
σσ ′(t) = i

〈
d†

σ ′eiH̃elt dσ e−iH̃elt
〉 〈

X†eiHpht Xe−iHph t
〉

= G̃<
σσ ′e−�(−t), (7)

where �(t) = g[Nph(1 − eiω0t ) + (Nph + 1)(1 − e−iω0t )]. The
Fourier transform of the lesser Green function is then equal to

G<
σσ ′(E) =

∞∑

n=−∞
Ln G̃<

σσ ′(E + nω0) (8)

with Ln = e−g(2Nph+1)enω0/2kB T In(2g
√

Nph(Nph + 1)), where
In(z) is the nth Bessel function of complex argument.
Similarly, writing G>

σσ ′(E) in the form

G>
σσ ′(E) =

∞∑

n=−∞
Ln G̃>

σσ ′(E − nω0), (9)

one can calculate the spectral function as

Aσ (E) = i(G>
σσ − G<

σσ ). (10)

We point out that G̃<(>)

σσ ′ is determined with the use of
Hamiltonian H̃el which has a form similar to that describing
a single-level dot attached to external electrodes via tunnel

terms. However, the key parameters of the model are
renormalized due to the presence of phonons. Thus, the general
relations derived for the Green functions in [17] also hold
in this particular case, so the Green functions G̃<(>)

σσ ′ can be
easily found. In particular, the lesser Green function can be
determined from the Keldysh equation, G̃< = G̃rΣ<G̃a . The
retarded G̃r and advanced G̃a Green functions are calculated
from the corresponding equation of motion, with the higher
order Green functions decoupled according to the procedure
described by Meir [49] and appropriate for the Kondo regime.

To describe spin splitting of the dot level due to
ferromagnetism of the external electrodes we introduce an
effective exchange field Bex which is exerted on the dot by
the electrodes. Such an approach leads to results which are in
agreement with those obtained using other ways of introducing
spin splitting of the dot levels [11, 15]. The exchange field Bex

is calculated according to the formula [17]

Bex = 1

gμB

∑

β

nβ Re
∫

dε

2π
(	̃

β
+ − 	̃

β
−)

fβ(ε)

ε − ε̃0 − ih̄/τ0
,

(11)
where nβ is the unit vector along the magnetic moment of the
electrode β , τ0 is the relevant relaxation time, whereas ε̃0 and
	̃

β
s stand for the spin-degenerate energy level and strength of

coupling to the lead β , respectively, which are renormalized by
the electron–phonon coupling. Strictly speaking, 	̃β

s is defined
in a similar way to 	

β
s , but with T̃kβs instead of Tkβs . Thus, the

coupling is reduced when the vibrational modes are taken into
account.

The self-energy �̃< which enters the Keldysh equation is
calculated from the Ng ansatz as Σ̃< = Σ̃<

0 (Σ̃r
0 − Σ̃a

0)
−1(Σ̃r −

Σ̃a), where Σ̃<
0 = i( Γ̃

L
fL + Γ̃R fR) is the lesser self-energy

of the corresponding non-interacting system with the matrix
elements 	̃

β

σσ ′ defined in a similar way to 	
β

σσ ′ , and Σ̃r
0 −

Σ̃a
0 = −i(Γ̃L + Γ̃R). The retarded and advanced self-energies

of the correlated system can be calculated from the Dyson
equation (I − g̃0Σ̃)G̃ = g̃0, and may be written in the form
Σ̃ = g̃−1

0 − n−1g̃−1
0 + n−1Σ̃w , where g̃0σσ ′ = δσσ ′(E − ε̃0)

−1,
nσσ = 1 − 〈d†

σ̄ dσ̄ 〉, nσ σ̄ = −〈d†
σ̄ dσ 〉, with σ̄ = −σ and

Σ̃w = Σ̃0 + Σ̃1. All processes which lead to the Kondo effect
are included in Σ̃1, which for U ⇒ ∞ is defined as follows:

�̃1σσ =
∑

β

∫
dε

2π

	̃
β

σ̄ σ̄ fβ(ε)

E − ε̃σ + ε̃σ̄ − ε + ih̄/τσ̄

and

�̃1σ σ̄ =
∑

β

∫
dε

2π

	̃
β

σ̄σ fβ(ε)

E − ε
.

The procedure briefly outlined above allows us to calculate
the Green functions G̃<

σσ ′(E) and G̃>
σσ ′(E). Then, the

Green functions G< and G> can be determined according to
equations (8) and (9). We note that the Green functions and
the relevant occupation numbers, 〈d†

σ dσ 〉 = −i
∫

dE
2π

G<
σσ , have

been calculated self-consistently. Finally, having found the
Green functions, one can calculate current flowing through the
system using equation (4).

3
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Figure 1. DOS in the equilibrium situation for both spin orientations
and for the indicated values of the angle between the magnetic
moments. The other parameters are E0 = −0.31, ω0 = 0.05,
	L = 	R = 0.1, p = 0.2, kBT = 0.001, and g = 0.1. For θ = π the
peaks for the two spin orientations overlap.

4. Numerical results

We consider now some numerical results obtained within the
formalism outlined above. For convenience, we will use
relative energy units, and as the unit we assume D/50, where
D is the electron bandwidth. For numerical calculations we
assume the following values of the parameters: the bare dot
level Eσ = E0 = −0.31, phonon energy ω0 = 0.05, lead
polarization p = 0.2, and coupling parameters 	L = 	R =
0.1. We will consider two different situations as regards the
strength of the electron–phonon coupling—a relatively weak
coupling corresponding to g = 0.1, and moderate coupling
corresponding to g = 0.4. Both values of the parameter
g are within the applicability regime of the Lang–Firsov
transformation [42, 50].

In figure 1 we show the equilibrium (zero-bias) density of
states (DOS) for both spin orientations (along the quantization
axis of the dot) in the case of weak electron–phonon coupling
and for the indicated values of the angle between the magnetic
moments. Since the dot is symmetrically coupled to the leads,
the Kondo peak in the DOS in the antiparallel configuration
(θ = π ) appears at the Fermi level independently of the spin
orientation. This is a consequence of the compensation of
effective exchange fields from the two leads in this particular
magnetic configuration. Apart from this, the phonon satellites
in the DOS appear on both sides of the main peak at the
distance equal to ω0. Such a behaviour is similar to that
obtained for a system with nonmagnetic electrodes [43].

When the configuration departs from the antiparallel one,
the main Kondo peaks (i.e. those in the absence of electron–
phonon coupling) become shifted away from the Fermi level:
to the right (higher energy) for spin-down orientation and to
the left (lower energy) for the spin-up orientation. The phonon
satellites in the DOS for spin-up (spin-down) orientation
appear on the left (right) of the corresponding main resonance
and move together with this resonance when the angle varies
from antiparallel to parallel orientation. The splitting of the
main Kondo peak in the DOS for noncollinear configurations
is a consequence of a nonzero effective exchange field exerted

Figure 2. DOS in the equilibrium situation for both spin orientations
and for the indicated values of the angle between the magnetic
moments. The other parameters are E0 = −0.31, ω0 = 0.05,
	L = 	R = 0.1, p = 0.2, kBT = 0.001, and g = 0.4. The inset
shows the part of the spectrum around the Kondo peaks.

by the leads on the dot in such configurations [17]. The
situation is very similar to that for a nonmagnetic system in
an external magnetic field, when a finite Zeeman splitting
of the dot level leads to splitting of the Kondo peak. Each
phonon satellite peak moves coherently with the corresponding
component of the main peak. Apart from this, the splitting
of the Kondo anomaly monotonically increases as the angle θ

between magnetic moments of the leads varies from θ = π

(antiparallel configuration) to θ = 0 (parallel configuration).
For the assumed values of the parameters (particularly of

the electron–phonon coupling strength) the shifts of the peaks
corresponding to the up and down spin orientations are of
the order of phonon energy ω0 in the parallel configuration.
Accordingly, the main Kondo resonances in this configuration
appear roughly for energies ±ω0, whereas the corresponding
satellite peaks develop near ±2ω0 with respect to the Fermi
level. Since the electron–phonon coupling in figure 1
is relatively weak, the main Kondo resonances are well
pronounced.

Apart from the phonon satellite Kondo peaks, coupling
of the vibrational modes to electrons also slightly modifies
the spectral function. More specifically, the electron–phonon
coupling also leads to jumps in the DOS at the energies ±nω0,
independently of the magnetic configuration of the system.
These steps result from the Fermi distribution function and are
very sharp at low temperatures. However, they become washed
out when the temperature increases. In figure 1 these steps are
clearly seen for n = 1, while those corresponding to higher n
are not resolved due to weak electron–phonon coupling.

A different situation is presented in figure 2, where the
DOS is shown for the case of moderate electron–phonon
coupling, corresponding to g = 0.4, while all the other
parameters are the same as in figure 1. The spectral function
is now dominated by the broad maximum which appears at
the renormalized dot’s energy level ε̃σ . The main Kondo
resonances are clearly visible, although their intensities are
considerably reduced due to the electron–phonon coupling. At
the same time, the satellite peaks are well pronounced, as can

4
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Figure 3. Differential conductance for the indicated values of the
angle between the magnetic moments. The other parameters are
E0 = −0.31, ω0 = 0.05, 	L = 	R = 0.1, p = 0.2, kBT = 0.001,
and g = 0.1. Some of the curves are shown in the inset for a broader
voltage range, which allows identification of the Kondo peaks.

be seen in the inset to figure 2, where only the part of the
spectrum around the Kondo peaks is shown. Now, not only the
first phonon satellite Kondo peaks, but also the second ones
are resolved, separated by 2ω0 from the main Kondo peaks,
and clearly seen.

By comparison of figures 1 and 2 one can note that
position of the main Kondo peaks is slightly modified by the
electron–phonon coupling. More precisely, the splitting of the
Kondo peak in figure 2 is slightly reduced in comparison to
that in figure 1. We note that this splitting is determined by
the exchange field exerted by the leads on the dot. According
to equation (10), this exchange field depends on the dot–lead
coupling parameters, which are renormalized by the electron–
phonon interaction. Since the effective dot–lead coupling
strengths are considerably reduced by the electron–phonon
coupling, the splitting of the main Kondo resonance in figure 2
is smaller than that in figure 1, in agreement with [45]. In turn,
the corresponding phonon satellite peaks are better resolved.

The Kondo peaks in the DOS become additionally split
in nonequilibrium situations, when a bias voltage is applied.
This is well known also in other situations, so we will not
discuss the problem here in more detail. Instead of this we will
consider now electron transport in a biased system, where the
Kondo peaks in the DOS lead to anomalous behaviour of the
differential conductance in the small voltage regime (zero-bias
anomaly).

In figure 3 we show the differential conductance (only
the total conductance is shown there) in the case of weak
electron–phonon coupling and for the indicated values of the
angle between the magnetic moments. In the antiparallel
configuration the Kondo peak appears at the zero-bias limit,
V = 0. Moreover, two phonon peaks develop on either side
of the main peak at ±ω0. When the magnetic configuration
departs from the antiparallel one, the main Kondo peak
becomes split and the two components move away from the
zero-bias limit (one towards positive and the other towards
negative bias). The two additional and well-resolved phonon
peaks remain at the energies ±ω0, independently of the
magnetic configuration. These peaks follow from the steps

Figure 4. Differential conductance for the indicated values of the
angle between the magnetic moments. The other parameters are
E0 = −0.31, ω0 = 0.05, 	L = 	R = 0.1, p = 0.2, kBT = 0.001,
and g = 0.4. Some of the curves are presented in the inset for a
broader voltage range.

in the DOS at ±ω0, and can be interpreted as the onset of a
phonon-assisted channel for tunnelling. Typical phonon Kondo
peaks appear at the distance ω0 from the main Kondo peaks.
However, these features are not well resolved in figure 3 due
to a relatively weak electron–phonon coupling. Moreover, for
the parameters assumed in figure 3, the Kondo peaks in the
parallel configuration overlap with the peaks at ±ω0, so only a
single peak of enhanced intensity is observed for each voltage
polarization in this configuration.

In figure 4 we show the differential conductance in the
case of strong electron–phonon coupling. The key qualitative
difference is that now the effective exchange field exerted
on the dot is reduced by the electron–phonon coupling, and
accordingly the Kondo peaks in the parallel configuration do
not overlap with the peaks at ±ω0, and both are clearly seen
in the conductance. The intensities of the main Kondo peaks,
however, are considerably reduced in comparison to those in
the case of weak electron–phonon coupling, and the low bias
Kondo anomaly is suppressed. The suppression of the peaks
takes place for all magnetic configurations. Moreover, apart
from the main components, the two phonon satellite Kondo
peaks which develop in a distance ω0 from each anomaly are
now well resolved. The positions of these satellites depend on
the angle θ and they move coherently with the main peaks as θ

is changed. This behaviour can be clearly seen in the inset to
figure 4, where the conductance is depicted in a broader energy
region and only for a few values of θ .

The difference in transport characteristics for parallel
and noncollinear geometries gives rise to the TMR effect,
which can be described quantitatively by the ratio TMR(θ) =
[I (θ = 0) − I (θ)]/I (θ), where I (θ) denotes the current
flowing through the system when the magnetic moments of
the leads form an angle θ . The numerical results for TMR,
corresponding to figures 3 and 4, are shown in figure 5.

The main feature of TMR is that it becomes negative
at small voltages. Similar negative TMR was also found in
systems without electron–phonon coupling [17], so we will not
discuss this point more, as its origin is the same. Instead, we
focus on the effects due to electron–phonon interaction. We

5
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Figure 5. TMR effect for weak and strong electron–phonon coupling
and for parameters as in figures 2 and 3, respectively.

point out that the shape of the TMR curve is determined mainly
by the Kondo anomaly and resembles the one obtained in
the absence of EPI. Although the electron–phonon interaction
leads to well-resolved satellites in the differential conductance,
the features of the electron–phonon coupling are only weakly
seen in the shape of the TMR curve. However, the electron–
phonon interaction has a significant influence on the TMR
magnitude. Generally, for strong electron–phonon coupling,
the TMR magnitude decreases with increasing coupling and
becomes close to zero over a wide range of bias voltages. This
is shown explicitly in figure 6, where the angular dependence
of TMR is shown for several values of bias voltage applied to
the system, and for two values of the electron–phonon coupling
strength.

From figures 5 and 6 it follows that considerable changes
of TMR occur mainly in the regime of small voltages.
Moreover, the absolute magnitude of TMR increases then in
a monotonic way with the angle θ between the magnetic
moments. The increase in TMR is particularly fast when the
system approaches the antiparallel configuration. For higher
voltages, on the other hand, TMR is rather small. Moreover,
it changes sign from negative (inverse spin valve) to positive
(normal spin valve). This behaviour is similar to that found in
systems without electron–phonon interaction [17].

5. Summary and concluding remarks

We have studied the influence of electron–phonon interaction
on spin-polarized transport through a single-level quantum dot
in the Kondo regime. The interplay of the effects resulting from
spin-dependent coupling of the dot to external ferromagnetic
electrodes and due to electron–phonon interaction in the
dot has been analysed in detail. The main features due
to the vibrational modes are the phonon satellite peaks
which develop in the density of states. These additional
peaks accompany the main spin-dependent Kondo components
and move accordingly when the magnetic configuration of
the system varies continuously from antiparallel to parallel
alignment. The Kondo satellites due to electron–phonon
coupling are not very well pronounced in the differential
conductance and can be observed only in the case of strong

Figure 6. TMR versus the angle θ for indicated values of the bias
voltage, and for two different values of the coupling parameter
g = 0.1 (a) and g = 0.4 (b).

electron–phonon interaction. The phonon Kondo satellites
move then coherently with the main resonances as the magnetic
configuration is changed. Electron–phonon coupling has only
a weak influence on the shape of the TMR curve as a function
of the bias voltage. However, the TMR effect becomes
significantly reduced by a strong electron–phonon interaction.
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Condens. Matter 18 2291

[17] Swirkowicz R, Wilczynski M, Wawrzyniak M and
Barnas J 2006 Phys. Rev. B 73 193312

[18] Simon P, Cornaglia P S, Feinberg D and Balseiro C A 2007
Phys. Rev. B 75 045310

[19] Pasupathy A N, Bialczak R C, Martinek J, Grose J E,
Donev L A K, McEuen P L and Ralph D C 2004
Science 306 86

[20] Hauptmann J R, Paaske J and Lindelof P E 2007 Preprint
0711.0320

[21] Hamaya K, Kitabatake M, Shibata K, Jung M, Kawabura M,
Hirakawa K, Machida T, Taniyama T, Ishida S and
Arakawa Y 2007 Appl. Phys. Lett. 91 232105

[22] Fujisawa T, Oosterkamp T H, van der Wiel W G, Broer B W,
Aguado R, Tarucha S and Kouwenhoven L P 1998
Science 282 932

[23] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and
McEuen P L 2000 Nature 407 57

[24] Qin H, Holleitner A W, Eberl K and Blick R H 2001
Phys. Rev. B 64 241302

[25] Zhitenev N B, Meng H and Bao Z 2002 Phys. Rev. Lett.
88 226801

[26] LeRoy B J, Lemay S G, Kong J and Dekker C 2004
Nature 432 371

[27] Yu L H, Keane Z K, Ciszek J W, Cheng L, Stewart M P,
Tour J M and Natelson D 2004 Phys. Rev. Lett. 93 266802

[28] Yu L H and Natelson D 2004 Nano Lett. 4 79
[29] Qiu X H, Nazin G V and Ho W 2004 Phys. Rev. Lett.

92 206102
[30] Weig E M, Blick R H, Brandes T, Kirschbaum J,

Wegscheider W, Bichler M and Kotthaus J P 2004
Phys. Rev. Lett. 92 046804

[31] Wingreen N S, Jacobsen K W and Wilkins J W 1989
Phys. Rev. B 40 11834

[32] Lundin U and McKenzie R H 2002 Phys. Rev. B 66 075303

[33] Kuo D M-T and Chang Y C 2002 Phys. Rev. B 66 085311
[34] Zhu J-X and Balatsky A V 2003 Phys. Rev. B 67 165326
[35] Braig S and Flensberg K 2003 Phys. Rev. B 68 205324
[36] Alexandrov A S and Bratkovsky A M 2003 Phys. Rev. B

67 235312
[37] Flensberg K 2003 Phys. Rev. B 68 205323

Paaske J and Flensberg K 2005 Phys. Rev. Lett. 94 176801
[38] Mitra A, Aleiner I and Millis A J 2004 Phys. Rev. B 69 245302
[39] Chen Z-Z, Lu R and Zhu B-F 2005 Phys. Rev. B 71 165324
[40] Koch J and Oppen F 2005 Phys. Rev. Lett. 94 206804

Koch J, Raikh M E and Oppen F 2006 Phys. Rev. Lett.
96 056803

[41] Cornaglia P S and Grempel D R 2005 Phys. Rev. B
71 245326

Cornaglia P S, Grempel D R and Ness H 2005 Phys. Rev. B
71 075320

[42] Galperin M, Nitzan A and Ratner M A 2006 Phys. Rev. B
73 045314

Galperin M, Nitzan A and Ratner M A 2007 Phys. Rev. B
76 035301

[43] Chen Z-Z, Lu H, Lu R and Zhu B-F 2006 J. Phys.: Condens.
Matter 18 5435

[44] Wang R-Q, Zhou Y-Q, Wang B and Xing D Y 2007 Phys. Rev.
B 75 045318

[45] Wang R-Q, Zhou Y-Q and Xing D Y 2008 J. Phys.: Condens.
Matter 20 045219

[46] Jauho A-P, Wingreen N S and Meir Y 1994 Phys. Rev.
B 50 5528

Wingreen N S and Meir Y 1994 Phys. Rev. B 49 11040
[47] Haug H and Jauho A-P 1996 Quantum Kinetics in Transport

and Optics of Semiconductors (Berlin: Springer)
[48] Mahan G D 2000 Many-Particle Physics (New York: Plenum)
[49] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett.

70 2601
[50] Galperin M, Ratner M A and Nitzan A 2007 J. Phys.: Condens.

Matter 19 103201

7

http://dx.doi.org/10.1088/0953-8984/18/7/016
http://dx.doi.org/10.1103/PhysRevB.73.193312
http://dx.doi.org/10.1103/PhysRevB.75.045310
http://dx.doi.org/10.1126/science.1102068
http://arxiv.org/abs/0711.0320
http://dx.doi.org/10.1063/1.2820445
http://dx.doi.org/10.1126/science.282.5390.932
http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1103/PhysRevB.64.241302
http://dx.doi.org/10.1103/PhysRevLett.88.226801
http://dx.doi.org/10.1038/nature03046
http://dx.doi.org/10.1103/PhysRevLett.93.266802
http://dx.doi.org/10.1021/nl034893f
http://dx.doi.org/10.1103/PhysRevLett.92.206102
http://dx.doi.org/10.1103/PhysRevLett.92.046804
http://dx.doi.org/10.1103/PhysRevB.40.11834
http://dx.doi.org/10.1103/PhysRevB.66.075303
http://dx.doi.org/10.1103/PhysRevB.66.085311
http://dx.doi.org/10.1103/PhysRevB.67.165326
http://dx.doi.org/10.1103/PhysRevB.68.205324
http://dx.doi.org/10.1103/PhysRevB.67.235312
http://dx.doi.org/10.1103/PhysRevB.68.205323
http://dx.doi.org/10.1103/PhysRevLett.94.176801
http://dx.doi.org/10.1103/PhysRevB.69.245302
http://dx.doi.org/10.1103/PhysRevB.71.165324
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.96.056803
http://dx.doi.org/10.1103/PhysRevB.71.245326
http://dx.doi.org/10.1103/PhysRevB.71.075320
http://dx.doi.org/10.1103/PhysRevB.73.045314
http://dx.doi.org/10.1103/PhysRevB.76.035301
http://dx.doi.org/10.1088/0953-8984/18/23/015
http://dx.doi.org/10.1103/PhysRevB.75.045318
http://dx.doi.org/10.1088/0953-8984/20/04/045219
http://dx.doi.org/10.1103/PhysRevB.50.5528
http://dx.doi.org/10.1103/PhysRevB.49.11040
http://dx.doi.org/10.1103/PhysRevLett.70.2601
http://dx.doi.org/10.1088/0953-8984/19/10/103201

	1. Introduction
	2. Model
	3. Theoretical formulation
	4. Numerical results
	5. Summary and concluding remarks
	Acknowledgments
	References

